
Browser History Stealing with Captive Wi-Fi Portals
Adrian Dabrowski∗, Georg Merzdovnik∗, Nikolaus Kommenda† and Edgar Weippl∗

∗SBA Research, Vienna, Austria
Email: {adabrowski|gmerzdovnik|eweippl}@sba-research.org

†Technische Universität Wien, Vienna, Austria
Email: nikolaus.kommenda@alumni.tuwien.ac.at

Pr
ep

ri
nt

;
to

ap
pe

ar
in

pr
oc

ee
di

ng
s

of
M

ob
ile

Se
cu

ri
ty

Te
ch

no
lo

gi
es

(M
oS

T
)

20
16

at
IE

E
E

Se
cu

ri
ty

&
Pr

iv
ac

y
W

or
ks

ho
psAbstract—In this paper we show that HSTS headers and

long-term cookies (like those used for user tracking) are so
prevailing that they allow a malicious Wi-Fi operator to gain
significant knowledge about the past browsing history of users.
We demonstrate how to combine both into a history stealing
attack by including specially crafted references into a captive
portal or by injecting them into legitimate HTTP traffic.

Captive portals are used on many Wi-Fi Internet hotspots to
display the user a message, like a login page or an acceptable
use policy before they are connected to the Internet. They are
typically found in public places such as airports, train stations, or
restaurants. Such systems have been known to be troublesome for
many reasons. In this paper we show how a malicious operator
can not only gain knowledge about the current Internet session,
but also about the user’s past. By invisibly placing vast amounts
of specially crafted references into these portal pages, we can
lure the browser into revealing a user’s browsing history by
either reading stored persistent (long-term) cookies or evaluating
responses for previously set HSTS headers. An occurrence of a
persistent cookie, as well as a direct call to the pages’ HTTPS site
is a reliable sign of the user having visited this site earlier. Thus,
this technique allows for a site-based history stealing, similar
to the famous link-color history attacks [1]. For the Alexa Top
1,000 sites, between 82% and 92% of sites are affected as they
use persistent cookies over HTTP. For the Alexa Top 200,000
we determined the number of vulnerable sites between 59% and
86%.

We extended our implementation of this attack by other
privacy-invading attacks that enrich the collected data with
additional personal information.

I. INTRODUCTION

Browser history stealing discloses information about user’s
past browsing behavior without their knowledge, e.g., by
visiting a website that mounts such an attack. The history is
directly or indirectly extracted from the browser itself. One of
the first and widely known methods facilitated the :visited

attribute of links. Visited link targets can be rendered differ-
ently by the browser to ease navigation. Variants of this attack
examine the displayed color [1] or load external images [2],
[3] to determine if the user visited a specific URL earlier. Jang
et al. [4] showed that several sites use these techniques to spy
on their users.

Browser manufacturers reacted in two ways: First, they
fixed a number of vulnerabilities and included mitigations, and
secondly they introduced a privacy mode that exempts specific
browsing sessions and associated data from appearing in the
browsing history.

Captive portals are a technique to redirect the user on
her first request to a portal website. These are heavily used

in public Wi Fi hotspot systems such as cafés, restaurants,
airports, and hotels. The user is informed about the spon-
sor of the access, possible restrictions as well as potential
payment methods and has to accept terms and conditions.
After completion, the user is given access to the Internet.
Especially in transit areas the majority of users use hand-held
devices such as tablets and smart phones. Additionally, these
devices automatically connect to known Wi Fi access points.
We specifically elaborate on these cases and their implications.

Public hotspots have been known to be troublesome in many
regards: They are often unencrypted, fake access points can
easily attract legitimate users, and they offer a single point
through which all traffic has to pass. This gives the Wi Fi or
captive portal operator great power and insight on the users’
current sessions.

In this paper, we describe how such an operator can also
gain knowledge about a user’s past. The attack can be carried
out by the legitimate hotspot operator, but also by an evil-twin
network pretending to be the real network [5], or generally by
any man-in-the-middle attacker. They can trick the browser to
disclose information that allows conclusions about the user’s
past browsing history. This also applies to VPN users, as they
have to go through the login process before starting the VPN
session and the browser keeps only one history regardless of
the connection type.

The paper is structured as follows: In Section II and III we
expand on the technical background of history stealing and
why it is such a lucrative attack. Section IV describes the
attack in detail whereas Section V expands on the differences
with regards to mobile operating systems. We estimate the
impact and applicability of the attack in Section VI by crawl-
ing Alexa’s Top 200,000 sites. After describing our proof-
of-concept implementation (Section VII) and its extensions
and limitations (Section VIII), we present our conclusion in
Section IX.

II. MOTIVATION

A browsing history is a comprehensive picture not only
about a user’s past activities, but also about their interests,
political opinion, sexual preference, geographical or ethnic
heritage, spoken languages, social contacts and so forth. For
example, a user who visits localized websites is most likely
from that region or speaks its distinct language (e.g. amazon.fr,
amazon.jp). Visitors of grindr.com or transblog.de most likely
have a very specific sexual orientation, whereas okcupid.com

or parship.com visitors are probably currently single. Like-
wise, history entries of websites for certain medical conditions
(e.g. pregnancy, AIDS, depression), political campaign web-
sites, or those of religious communities do not require much
imagination to draw conclusions about a particular user. A
reference to intranet.somecompany.com tells much about the
employer.

In the past, URL-based history attacks have also been
used to uncover social network contacts and de-anonymize
users [6]. This information is of great interest for targeted
advertisement [4], but also for targeted attacks.

Multiple history stealing methods have been presented in
the literature. They range from analyzing the link color (visited
links can be displayed differently) via Javascript [1] or condi-
tionally loading external resources based on CSS rules [2] to
GPU timing attacks [7].

III. BACKGROUND

In this section we briefly describe the technical foundations
of this work.

Captive Portals are a technique to display a certain content
when a new user connects to a (wireless) network. There are
multiple ways to achieve that goal. The most common is to
intercept the first HTTP request from the user’s browser to any
site and redirect it (spoofing HTTP 302 Moved Temporarily
response) to the web page of the operator’s choice. This web
site (the portal) will explain the user the terms and conditions
for the usage of the network and its Internet connectivity.
Sometimes this includes payment, other times just advertise-
ment, or acceptance of a legal disclaimer. After completion,
the user’s physical MAC address or local IP address is put on
a whitelist and its traffic is passed unaltered to and from the
Internet.

HTTP cookies [8] are a technique (to be precise: an optional
header) within HTTP requests to add a common state between
the browser and the server to the otherwise stateless HTTP
protocol. On a technical level, cookies are small pieces of
data (directly or indirectly) set by the server that the client’s
browser attaches every time it sends a request to a specific
site. Cookies are often used to either directly store user
configuration (e.g., language choice), indirectly store a state
(e.g., a session identifier with the actual data stored on the
server), authenticate a user (e.g., a login cookie), or uniquely
identify a client (e.g., tracking cookie).

There are multiple ways how cookies can be set in a
browser. In the traditional way, the server sends a Set-Cookie
HTTP response header to the client, giving the cookie a
name and a value. Additionally, cookies can be set using
Javascript on the client side. Many tracking libraries (e.g.,
Google Analytics) use this method.

By default, a cookie is only valid for the lifetime of a
browser session. By setting an additional expiry date, the
cookie becomes a persistent or permanent cookie which is able
to survive multiple browser sessions. An httpOnly cookie can
be set and read by the server, but not through Javascript. This is
an option introduced against cookie stealing attacks via cross

Fig. 1. History stealing flow chart on users browser reaction.

site scripting (XSS). A secure cookie is only presented by the
client to the server on encrypted connections (i.e., HTTPS).
Cookies can also be bound to a specific domain and path where
it will be also used for subordinate domain names and paths
(e.g., a cookie set for the domain example.com is also used by
the browser for docs.example.com).

IV. HISTORY STEALING IN WI-FI CAPTIVE PORTALS

Wi-Fi hotspots are a popular method to access the Internet
in public places. They are typically faster than mobile data
connections and do not count towards a monthly mobile data
plan. For foreign visitors, they are often the only way to save
on excessive data roaming fees.

Most users are familiar with captive portals. At the first
request, the web browser is redirected to a portal page that in
many cases contains the terms and conditions, a word from
the sponsor, and – if applicable – payment options.

A. Stealing History

Just like most other browser-based history stealing attacks,
this attack scheme requires a list of URLs or domains of
interest, and testing each of them for their occurrence in
the browser history. The history stealing method works by
inserting image references such as <img href="http:

//somedomain.com/nonexisting-file?customtag">

for each site into the captive portal’s landing page. The client
will look up the domain and try to fetch the alleged external
resource. Each of these requests is (again) intercepted by
the captive portal. The chosen filename and/or an added tag
ensures that the portal can identify these requests, record the

Fig. 2. History stealing scenario in a public Wi-Fi hotspot setting.

request (and its cookies) and return a dummy file (e.g., a
1×1 pixel image or an empty document).

The browser will include cookies for that site into the
request if they are available in the local cookie store. Thus, a
cookie included in the provoked request is proof of the user
visiting the site before (Figure 1). A missing cookie could
indicate that (i) the user has not visited the website, (ii) the
website is not setting any cookies, (iii) the cookies already
expired, or (iv) the website is setting cookies for a restricted
path or sub-domain, or just for secure connections (secure
cookie).

Websites trying to protect their users using HTTP Strict
Transport Security (HSTS) [9] can also accidentally leak
history information. HSTS allows websites to declare that
browsers should only use encrypted connections. This in-
formation is transferred at the first visit of a browser to a
particular website. Apart from about 6,500 sites on the public
preload HSTS list used by particular browsers [10], a cached
HSTS entry indicates that the user visited the site before.

Even though the staged requests are intercepted, they take
some time. A waiting screen (e.g., “Please wait while you
are connected to the Internet”) can put off the user only for
a limited time before she/he unnervingly closes the window
(or the app). We therefore also inject these tagged image

references into later HTTP requests with HTML content using
a transparent man-in-the-middle proxy on the gateway.

Image () tags are not the only option to generate
external requests by the browser. Basically any method used
in Cross-Site-Request-Forgery (XSRF) attacks works. Image
tags have the advantage of not requiring any Javascript on the
client side. They work considerably faster than <iframe>
which produce considerable overhead at the client.

The attack heavily relies on the usage of long-term cookies
by websites. We elaborate on the prevalence of long term
cookies in Section VI.

B. Unintentional Connection

Once a Wi-Fi network is known to a phone or tablet, every
further connection will be made automatically in most cases
(e.g., Android, iOS).

For our attack, we will either operate a Wi-Fi hotspot that
users actively connect to or simulate a known one (Evil-Twin
attack [5]). The Wigle project [11] provides a collection of
popular Wi-Fi names (SSID). For example attwifi, BTOpen-
zone, public, Guest, Free Public WiFi or BTWIFI are often
used for public hotspots. Default Wi-Fi names are also a good
guess, as many smart phone users might have used them once
before: linksys, default, dlink, belkin54g, or ZyXEL.

V. AVOIDING MINIMALISTIC BROWSERS FOR CAPTIVE
PORTAL LOGIN

Computer users will typically use their default desktop
browser to be captured and perform the login procedure. Thus,
they expose the history of a full-fledged browser that is most
likely used for their day-by-day browsing.

In contrast, modern mobile phone operating systems try to
detect captive portals and offer the user a way to quickly log
on with a minimalistic browser. This browser does not share
the history with the main browser.

Android and iOS perform different connectivity checks and
display a notification if they assume that user interaction is
needed. For example, iOS performs a captive portal test since
version 4 and Android since version 4.2. Before Android 5.0,
the default system browser was used to load the captive portal
which directly exposes the history. Since Android 5.0, the
operating system starts a captive portal browser, basically a
lightweight browser in privacy mode (e.g., without history).

To prevent the usage of a stripped-down browser, the at-
tacker can fool the online check into believing it is connected.
This way, the victims will not get a notification and will use
the default browser for the captive portal, thus exposing their
actual browsing history.

As stated above, this does not typically apply for users
with a desktop browser, as they will use their default browser.
However, we know of two exceptions: Chrome OS/Chromium
and Mac OS X since 10.7. Both perform the exact same
connectivity test as their mobile OS counterparts and can be
circumvented in the same manner.

A. Circumventing the Connectivity Test on Android

Android, Chromium [12], and Desktop Chrome [13]) cre-
ates am HTTP request to one of the Google servers and checks
for a specific return code. A plain captive portal will try to
redirect the user during this request and rewrite the return
code.

The connection manager binds an HTTP client to
a specific interface (e.g. Wi Fi) and tries to request
http://clients3.google.com/generate_204. A
response with a 204 HTTP status code [14, Section 10]
indicates an open Internet connection, anything else a
captive portal. The attacker can test if the circumvention
was successful by testing for the User-Agent string of the
lightweight browser (and other minor differences [15]).

B. Circumventing the Connectivity Test on iOS

Apple iPhones use a very similar technique to
Android. Apple’s Captive Network Assistant (CNA)
downloads URLs with a known content such as
http://captive.apple.com/hotspot-detect.html or
http://www.apple.com/library/test/success.html.
The list of tested URLs changed significantly between
different versions of the operating system and expanded
considerably in later versions. However, the CNA uses a very
distinct User-Agent string (“wispr”) which has proven to be
a good indicator [16]–[18].

0 50000 100000 150000 200000

Alexa Rank

0%

20%

40%

60%

80%

100%

S
it

e
s

v
u
ln

e
ra

b
le

 t
o
 h

is
to

ry
 s

te
a
lin

g

HSTS + Persistent + JS?

HSTS + Persistent

Fig. 3. Percentage of scanned sites that are vulnerable to our history
stealing attack in the Alexa Top 200, 000, grouped by steps of 1,000 pages
(cumulated). The lower bound represents all pages that either use HSTS or
set a persistent cookie. The upper bound additionally includes cookies set
through Javascript (includes session cookies). The real number of vulnerable
sites is somewhere in the highlighted area.

VI. ASSESSMENT OF APPLICABILITY

To get an impression of the impact of our cookie-based
history stealing attack, we analyzed how many webpages
actually either use persistent cookies or set up HSTS on their
servers. Therefore, we crawled Alexa Top 200,000 websites
with a headless browser and recorded the network traffic.

There are two ways how a cookie can be set, either
through the Set-Cookie header or by using Javascript’s
document.cookie property. Furthermore, a persistent cookie
needs to have an expiration date set which lies in the future1

otherwise the cookie will be deleted as soon as the browser
session is closed. Additionally, for the cookie stealing attack
to work, the secure flag of the cookie must not be set.

A. Lower Bound Estimation

Cookies set directly through the server are easy to detect
and filter according to the above mentioned criteria. They can
be observed in the server response without the need to evaluate
Javascript. However, they only determine the lower bound of
pages vulnerable to our history stealing attack.

B. Upper Bound Estimation

For an upper bound estimation we also included cookies
for which we did not observe the Set-Cookie header, but
the cookie appeared in a request from the browser to the
server. We removed all session (non-persistent) cookies that
were set by the server. However, the remaining set will
include persistent and non-persistent session cookies set by
Javascript. The persistence of a cookie is not indicated by the
browser in the requests sent to servers. Therefore, the upper
bound overestimates the number of sites by those which use
Javascript to set session cookies, but no persistent cookies.

1Past dates are used to delete such cookies prematurely.

A short manual inspection showed that many of the
Javascript cookies we observed are set by tracking scripts
like the __utma persistent cookie set by Google Analytics2.
Therefore the real numbers are more likely closer to the upper
than the lower bound.

Additionally, the crawling technique might have missed
cookies set under rare conditions (such as sub-pages, configu-
ration, tracking opt-out cookies) making the real numbers even
higher.

C. Methodology

We set up headless browsers on Amazon EC2 Spot instances
to visit the Alexa Top 200,000 websites in an attempt to
determine the pervasiveness of persistent cookies.

For every website, we crawled the main page and three
randomly selected sub-pages and collected the corresponding
responses. We then extracted the headers from each of the
requests and searched for the Set-Cookie headers. If these
headers are found in one of the responses, the corresponding
expiry date is set to a future date3, and the secure flag is not
set, we count the page as setting a persistent cookie. Further-
more we also look for the Strict-Transport-Security

header to see if HSTS is enabled for the page. for the bounds
calculation, entries in the HSTS pre-load list used by several
browsers were excluded from the set of possibly vulnerable
pages.

D. Results

As the graph in Figure 3 shows, even without considering
cookies set through Javascript, on average about 59.47% of all
pages are either using HSTS or are setting at least some kind
of persistent cookie. For the top 1,000 pages this persistent
cookie usage spikes up to 82.24%. As mentioned before, these
results only indicate a lower bound. If we also count cookies
that were set through Javascript, the numbers for vulnerable
pages rise to 91.52% for the top 1,000 pages and 86.31% on
average.

These results clearly indicate that there exists a large attack
surface for the captive-portal-based history stealing attack.

VII. PROOF-OF-CONCEPT IMPLEMENTATION

We created a proof-of-concept privacy-invading Wi Fi
hotspot that might also be used for raising awareness in educa-
tional settings or to perform public demonstrations (cf. [19]).
It implements the history stealing attack as well as several
additional attacks and provides a per-user result page showing
in plain language which data has been automatically collected.

Figure 4 gives an overview of the implementation structure.
It runs on a virtual machine connected to an USB Wi Fi
adapter4 in access point (AP) mode. A set of Python scripts
extends a Wi Fi Router/NAT iptables setup.

2https://developers.google.com/analytics/devguides/collection/analyticsjs/
cookie-usage?hl=en (Accessed: 2016–01–29)

3includes the Expiry and the Max-age option
4TP-LINK TL-WN722N

HTTP traffic is diverted to a man-in-the-middle (MITM)
proxy that can intercept and manipulate passing HTTP re-
quests. This is the main component of the history stealing
attack (see Section VII-A).

To further demonstrate other risks of public hotspots, we
also added a small number of additional attacks. A number
of passive attacks is implemented by simple packet sniffing
on unencrypted non-HTTP protocols, such as plain-text pass-
words or DNS-snooping (see Section VII-B). This includes
the detection of installed applications based on simple network
patterns, deriving the full name and gender of the user from
the device name or through third-party websites (using the
captured cookies). We also added active exploits for security
vulnerabilities (e.g., WebView) by injecting code into the
HTTP traffic.

A. Implementation of History Stealing

In principle, there are many ways to compel a browser to
make external requests. We tested three methods: Javascript
XML-RPC requests, IFrames, and IMG tags. The latter turned
out to be the fastest. It is lightweight and facilitates the
browsers ability to parallelize requests. These requests are
inserted into the portal webpage and/or into other HTML pages
loaded via HTTP. These induced requests are detected by the
MITM proxy based on marker strings within the request (e.g.,

Mongo
DB

personal report
page

HTTP traffic
other protocols

(e.g. DNS)

JSON data

Internet

aggregators
(e.g. web
scrapers)

mitmproxy
active interception

& manipulation

tshark wrappers
passive

evesdropping

Fig. 4. Structure of the implementation

https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage?hl=en
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage?hl=en

as part of the URL). The mitm-proxy collects these requests
and answers them locally. The latter serves two purposes: (a)
it speeds up the requests and (b) it prevents the client from
collecting additional cookies through the probing requests.

B. Further Attacks by Malicious Hotspots

For Android phones we implemented sample exploits based
on the WebView component [20], [21]. WebView is a UI
element which allows developers to simply display local
or remote HTML content. It offers a Javascript application
bridge that allows arbitrary calls to public functions in the
application, including Java Reflection. It is still present in
today’s applications if they are compiled for Android versions
below 4.3. One of our test scripts steals the latest photos shot
with the phone’s camera, while another one lists files from the
download folder. Additionally, a network traffic sniffer extracts
the listened-to music titles from Shazam’s [22] traffic.

C. Personal Data Enrichment

Based on the data acquired by the MITM proxy and passive
sniffing, small demonstration scripts try to enrich the dataset
with additional information from other external sources. Ama-
zon’s public profile feature can be used to acquire the user’s
full name, even if she or he is not actively logged in, since
it is enabled by default. Subsequently we use the name to
determine the gender of the user via a public demographic
database API.

1) Amazon Name Disclosure: Amazon.com has three states
for user sessions: A user can be either logged in, half logged
in, or not logged in at all. The half-logged-in state is a specialty
of Amazon. Amazon recognizes – with high probability –
based on an earlier long term plain-text cookies a particular
user even if the user’s session has expired. Amazon allows
the user to add products to the cart, but will ask for the
user’s password before any further action. By requesting
http://amazon.com/gp/profile (or the appropriate lo-
calized Amazon site) a public profile including wish lists,
reviews, and (by default) the full name of the user can be
accessed. A user can turn off the visibility of most elements
in the account settings.

2) Gender Estimation: Genderize.io [23] offers a simple
service to look up the gender of a person based on their first
name. We display this information in the user report.

3) Device (and User) Name: During setup, iOS suggests
to use [Firstname]’s iPhone as the device name. This name is
broadcast on the Wi-Fi using mDNS as part of the zero-config
peer discovery protocol Bonjour. It offers another way to get
hold of a user’s first name.

D. Device Parameters

During the captive portal phase – and later due to HTTP in-
jection – the browser can be tricked into loading and executing
arbitrary Javascript code. They can read out device parameters
(model and brand, screen size, installed extensions), but also
track a user’s site visits (scrolling, clicking).

E. Installed Applications based on Network Traffic

Some ad networks and most instant messengers regularly
connect to their home servers. In the latter case, this is
necessary to ensure that incoming instant messages are de-
livered over the current Internet connection. Therefore, most
such applications subscribe to system messages indicating a
change in the network connectivity. Connecting to a Wi-Fi
network (like our malicious one) is such an event. While many
instant messengers switched to encrypted traffic, the target
of the traffic (and the plain text DNS lookup before that)
give away enough information to identify the application5.
We included a few handwritten rules that identify WhatsApp,
Facebook Messenger, Instagram, Snapchat, Skype, and several
other services. Other works, such as NetworkProfiler [24] and
AppScanner [25] could easily enhance this detection.

F. Report Page

The report page sorts the collected information by its
technicality and privacy invasiveness. Thus, it presents high-
level information (e.g. the user’s real name) at the top, and
more technical details (e.g. history) below. This allows a non-
technical user to read the important information first.

VIII. LIMITATIONS AND FUTURE WORK

One of the major speed limitations of our implementation
is the DNS lookup round-trip time that each new site requires.
We can pre-load them into the cache on our hotspot, but
not to the client. For the browser, each reference needs to
look like a new site. Depending on the used mobile phone
the attack performs up to roughly 50-100 history tests per
second. Several optimization ideas (such as prematurely killing
connections as soon as data is collected) are left for future
work.

We are currently injecting history stealing references into
the portal and into HTTP traffic. However, we do not catch
HTTPS connections and therefore cannot detect cached HSTS
entries. Additionally, we experimented with SSL-stripping and
SSL-proxying, however, the failure rate was so high that we
are currently not using it. It would require extensive white-
or black-listing approaches to only affect sites and apps that
do no or insufficient certificate validation. We see this as a
positive sign of increased awareness among developers.

A limitation of our current hardware setup is the usage of
the TL-WN722N Wi-Fi stick as an access point. In general, the
chipset has good Linux support, but the firmware is limited to
seven clients in access point mode.

Since our implementation is meant to evolve to an ed-
ucational or demonstrative tool (e.g. for school children,
students, or not so technology versed people) we like to add
more automated aggregation scripts and app reconnaissance
mechanisms such as NetworkProfiler [24] or AppScanner [25].
This should serve the goal of increasing awareness regarding
the risks of public Wi Fi hotspots.

5This also works in many cases where the application is using a cloud
messaging service such as Google Cloud Messaging (GCM), because it needs
to communicate the GCM token to its home server.

IX. CONCLUSION

History stealing is one of the most privacy-invasive attacks.
Several methods have been developed in the past, most of
which have to probe each individual URL and are now
mitigated by current browsers.

We described a site-level history stealing attack which is
easy to perform by Man-in-the-Middle attackers and (even
more easily) by operators of captive portals, such as those
found in many public Wi-Fi hotpots. Captive portals enjoy a
privileged network position easing the implementation of the
attack. It affects notebooks, mobile phone, and tablet users
alike. The attack is difficult to prevent even for VPN users.

The attack operates by supplying the client browser with
a vast numbers of external references (e.g., images) which it
will try to download. It is not necessary to filter out these
requests at the gateway, but it speeds up the attack. During
these requests, the browser will use cookies from its persistent
cookie database. A presented cookie for a particular domain
is a clear indicator that the user has visited that site before.
We also described how a cached HSTS entry reveals a user’s
past visit.

We further investigated the prevalence of such long-term
cookies to estimate the attack surface. Out of the Alexa
Top 1,000 sites, between 82.24% and 91.52% are affected
(depending on how they set their cookies). The rate approaches
59.47% to 86.31% for the Alexa Top 200,000 dataset.

As a proof of concept we implemented this attack together
with several other privacy-invading attacks to create an en-
vironment where participants can educate themselves about
data leakage in untrusted Internet environments. Additional
scripts enrich this data with information from other sites (e.g.
Amazon’s real name disclosure). It is meant as a tool to
create awareness regarding privacy issues for people without
a technical background.

As an immediate countermeasure, we encourage web devel-
opers to switch all their sites to HTTPS, optionally add them
to the HSTS preload list, and to only use secure cookies. Ad-
ditionally, all operating systems should offer a stripped-down
browser to log on to captive portals with a less predictable
connectivity check.

ACKNOWLEDGMENT

This work is loosely inspired by Sergey Bratus’ Tweet about
captive portals [26].

This research was partially funded by the Internet Foun-
dation Austria (IPA) through their netidee program and by
the COMET K1 program of the Austrian Research Funding
Agency (FFG) and the Austrian Science Fund (FWF). Addi-
tional support provided by the Josef Ressel Center for User-
friendly Secure Mobile Environments (u’smile).

REFERENCES

[1] D. Baron, “Bug 147777 - :visited support allows queries into global
history,” 2002, http://bugzilla.mozilla.org/show bug.cgi?id=147777, ac-
cessed 2016-01-21.

[2] J. Ruderman, “Bug 57351 - css on a:visited can load an image and/or
reveal if visitor been to a site,” 2000, http://bugzilla.mozilla.org/show
bug.cgi?id=57351, accessed 2016-01-21.

[3] Z. Braniecki, “CSS allows to check history via :visited,” https://bugzilla.
mozilla.org/224954, 2003.

[4] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An Empirical
Study of Privacy-violating Information Flows in JavaScript Web
Applications,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS ’10. New
York, NY, USA: ACM, 2010, pp. 270–283. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866339

[5] F. Lanze, A. Panchenko, I. Ponce-Alcaide, and T. Engel, “Undesired
relatives: protection mechanisms against the evil twin attack in IEEE
802.11,” in Proceedings of the 10th ACM symposium on QoS and
security for wireless and mobile networks. ACM, 2014, pp. 87–94.

[6] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A Practical Attack
to De-anonymize Social Network Users,” in Security and Privacy (SP),
2010 IEEE Symposium on, May 2010, pp. 223–238.

[7] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing Webpages Rendered
on Your Browser by Exploiting GPU Vulnerabilities,” in Security and
Privacy (SP), 2014 IEEE Symposium on, May 2014, pp. 19–33.

[8] A. Barth, HTTP State Management Mechanism, RFC 6265, Internet
Engineering Task Force (IETF) Std., 2011.

[9] J. Hodges, C. Jackson, and A. Barth, HTTP Strict Transport Security
(HSTS), RFC-6797, Internet Engineering Task Force (IETF) Std., 2012.

[10] “HSTS pre-load submission,” https://hstspreload.appspot.com/, accessed
2016-01-31.

[11] “WiGLE Stats,” https://wigle.net/stats#ssidstats, accessed 2015-01-25.
[12] “Network Portal Detection - The Chromium Projects,”

https://www.chromium.org/chromium-os/chromiumos-design-
docs/network-portal-detection, accessed 2015-01-20.

[13] “Google Chrome Privacy Whitepaper,” 12 2015, https://www.google.
com/chrome/browser/privacy/whitepaper.html, accessed 2015-01-20.

[14] “Hypertext Transfer Protocol - HTTP/1.1- Section 10, Status Code
Definitions,” RFC 2616, 1999, https://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

[15] “Is it possible to detect the Android captive portal browser?”
http://stackoverflow.com/questions/32950326/is-it-possible-to-detect-
the-android-captive-portal-browser, accessed 2015-01-20.

[16] “iOS 7 and captive portal - a guide to captive portal requirements,”
http://blog.tanaza.com/blog/bid/318805/iOS-7-and-captive-portal-a-
guide-to-captive-portal-requirements, accessed 2015-01-20.

[17] “iOS7 and captive portals-changes to apple request URL,”
http://stackoverflow.com/questions/18891706/ios7-and-captive-portals-
changes-to-apple-request-url, accessed 2015-01-20.

[18] M. Strubel and S. Pierre, “iOS9 & Android with offline networks,”
http://librelist.com/browser//off.networks/2015/10/14/ios9-android-
with-offline-networks/, accessed 2015-01-20.

[19] R. Balebako, J. Jung, W. Lu, L. F. Cranor, and C. Nguyen, “Little
brothers watching you: Raising awareness of data leaks on smartphones,”
in Proceedings of the Ninth Symposium on Usable Privacy and Security.
ACM, 2013, p. 12.

[20] M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View to a
Kill: WebView Exploitation,” in Presented as part of the 6th USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET), 2013.

[21] N. Bergman, “Abusing WebView JavaScript Bridges,” http://d3adend.
org/blog/?p=314, Dec. 2012, accessed: 2014-09-15.

[22] “Shazam - Music Discovery, Charts & Song Lyrics,” http://www.shazam.
com/, accessed 2016-02-01.

[23] “Determine the gender of a first name,” https://genderize.io/, accessed
2016-01-20.

[24] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkpro-
filer: Towards automatic fingerprinting of android apps,” in INFOCOM,
2013 Proceedings IEEE. IEEE, 2013, pp. 809–817.

[25] V. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in 1st IEEE European Symposium on Security and Privacy (Euro
S&P 2016), March 2016, to appear.

[26] S. Bratus, “As more sites go HTTPS & more Wi-Fi goes captive portal,
I find myself treasuring short names of plain old HTTP sites that
get MITMed faster,” Nov 2015, https://twitter.com/sergeybratus/status/
664182669119483904.

http://bugzilla.mozilla.org/show_bug.cgi?id=147777
http://bugzilla.mozilla.org/show_bug.cgi?id=57351
http://bugzilla.mozilla.org/show_bug.cgi?id=57351
https://bugzilla.mozilla.org/224954
https://bugzilla.mozilla.org/224954
http://doi.acm.org/10.1145/1866307.1866339
https://hstspreload.appspot.com/
https://wigle.net/stats#ssidstats
https://www.chromium.org/chromium-os/chromiumos-design-docs/network-portal-detection
https://www.chromium.org/chromium-os/chromiumos-design-docs/network-portal-detection
https://www.google.com/chrome/browser/privacy/whitepaper.html
https://www.google.com/chrome/browser/privacy/whitepaper.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://stackoverflow.com/questions/32950326/is-it-possible-to-detect-the-android-captive-portal-browser
http://stackoverflow.com/questions/32950326/is-it-possible-to-detect-the-android-captive-portal-browser
http://blog.tanaza.com/blog/bid/318805/iOS-7-and-captive-portal-a-guide-to-captive-portal-requirements
http://blog.tanaza.com/blog/bid/318805/iOS-7-and-captive-portal-a-guide-to-captive-portal-requirements
http://stackoverflow.com/questions/18891706/ios7-and-captive-portals-changes-to-apple-request-url
http://stackoverflow.com/questions/18891706/ios7-and-captive-portals-changes-to-apple-request-url
http://librelist.com/browser//off.networks/2015/10/14/ios9-android-with-offline-networks/
http://librelist.com/browser//off.networks/2015/10/14/ios9-android-with-offline-networks/
http://d3adend.org/blog/?p=314
http://d3adend.org/blog/?p=314
http://www.shazam.com/
http://www.shazam.com/
https://genderize.io/
https://twitter.com/sergeybratus/status/664182669119483904
https://twitter.com/sergeybratus/status/664182669119483904

